博客
关于我
【语音识别】基于GUI DTW 0-9数字语音识别【Matlab 019期】
阅读量:735 次
发布时间:2019-03-21

本文共 751 字,大约阅读时间需要 2 分钟。

动态时间规整(DTW)是一种强大的语音识别技术,用于衡量两段语音序列的相似性。它通过动态规划算法,寻找两序列的最优对齐方式。

DTW原理基于以下关键步骤:

其一,构建距离矩阵。设语音序列Q和C分别为参考模板和测试模板,长度分别为n和m。矩阵中的每个元素(i, j)表示qi与cj的距离d(qi, cj),常用欧氏距离公式计算:d(qi, cj) = (qi - cj)^2。

其二,动态规划求解距离矩阵中的最短路径。路径视为对齐方式,通过的网格点表示对齐位置。各点的值由当前点的距离加上前方(上、左、上左)的最小值构成,确保路径的最小累计距离。

DTW规整函数需满足三大约束条件:

  • Metric Condition:距离矩阵满足三角不等式。
  • Warping Condition:相等长度的前缀在两序列中必须匹配。
  • Monotonicity Condition:必须满足从左上到右下的顺序性。
  • 该算法适用于处理不等长的时间序列,能够灵活处理语音中的时间差异。其优点在于考虑了语音序列的时间特性,相比直接缩放或截断,能更准确地衡量两序列的相似性。

    代码实现如下:

    函数 main 控制主界面,调用 main_OpeningFcn 初始化,main_OutputFcn 返回结果。
    edit1_Callback 处理参考库路径输入。
    pushbutton1_Callback 访问音频文件并进行识别。
    pushbutton2_Callback 对训练模板进行处理,包括声音读取、发射前后点检测、MFCC提取和存储。

    代码设计结构清晰,便于扩展和修改。用户可根据需求调整训练数据集和识别参数,以获得最佳识别效果。

    运行结果表明,系统能够准确识别测试音片,对训练数据集的语音库具有较高的识别率,显示出较强的性能。

    转载地址:http://zbnrz.baihongyu.com/

    你可能感兴趣的文章
    NIS服务器的配置过程
    查看>>
    NIS认证管理域中的用户
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 时事和见解【2023】
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP、CV 很难入门?IBM 数据科学家带你梳理
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP入门(六)pyltp的介绍与使用
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>